产品搜索  
     
您现在的位置:首页 > 新闻中心 > 精品推荐

Tantti 3D细胞培养支架(生医支架-Bio-Scaffold)

发布时间:2019-06-27

      Tantti(台湾创新材料股份有限公司 )是专业从事研究纳米材料且将纳米球自组装技术商业化的公司,目前领域已经拓展到3D细胞培养支架--Bio-Scaffold。  
      3D细胞培养支架,又称为生医支架(Bio-Scaffold)是由天然胶原蛋白制成的含有微米级孔洞的立体网状结构,主要用于干细胞放大培养,临床前体外药物测试,体外肿瘤模型培养,人造皮肤培养等。目前已经应用于细胞治疗、新药开发、精准医学等领域,有数十种不同类型细胞成功培养案例,且已发表大量高水平文献。


TanttiTM生医支架具有以下优势:
• 材质 - 支架材料采用胶原蛋白,可长时间培养细胞,仿生环境适于维持干细胞活性
• 细胞可回收 - 支架可用胰酶消化,实现细胞完全回收,满足更多实验需求
• 支架孔径大小均一,且可控制大小,孔孔相连,批次均一稳定,支架软硬度可调整
• 材料符合FDA标准
• 注射型材料 - 天然高分子生物材料,可注射动物









生医支架 使用我们支架所发表之期刊文献
1. Hsieh T. W., et al., Matrix dimensionality and stiffness cooperatively regulate osteogenesis of mesenchymal stromal cells.
Acta Biomaterialia (Impact factor: 6.319), 2016, 32: p. 210-222.
2. Hunag S. B., et al., Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion
three-dimensional cell culture. Scientific Reports (Impact factor: 5.228), 2015, article number: 18352.
3. Ling T. Y., et al., Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within
a 3D gelatin-Microbubble scaffold. Biomaterials (Impact factor: 8.387), 2014, 35(22): p. 5660-5569.
Advantages of Uniform Pore Size
A. Pore Uniformity (均一孔径)
The uniform scaffold could provide a better microenvironment for cells in comparison to a scaffold with non-uniform size and
structure. (Cho S. W., et al., Lanqmuir, 2010.)
B. Interconnectivity (高度连通率)
The uniform scaffold have been widely used in a wide variety of biomedical applications. While many of these applications
directly rely on the high interconnectivity and superior structural reproducibility rather than the uniform pore size and structure,
there are indeed a few unique applications that can otherwise never be accomplished using non-uniform scaffolds.
(Zhang Y. S., et al., Soft Matter, 2013.)


生医支架 相关验证文献

Applications

Reference

A. Immune cells

1. Lee J., et al., Inverted colloidal crystal as three-dimensional microenvironment for cellular co-cultures. Journal of Materials Chemistry (Impact  factor: 6.626), 2006, 16: p.3558-3564.
2. Stachowiak A. N. and Irvine D. J., Inverse opal hydrogel-collagen composite scaffolds as a supportive microenvironment for immune cell migration. Journal of Biomedical Materials Research Part A (Impact factor: 3.263), 2008, 85(3): p. 815-828.

B. Cell migration

1. Peyton S. R., et al., Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and
stiffness.
 Biotechnol Bioeng (Impact factor: 4.243), 2011, 108(5): p. 1181-1193.
2. Sliva J. D., et. al., 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications.
 Integrative Biology (impact
factor: 3.371), 2011, 3: p. 1202-1206.

C. Formation of cell bodies

1. Lee J., et al., Engineering liver tissue spheroids with inverted colloidal crystal scaffolds. Biomaterials (Impact factor: 8.387), 2009, 30(27): p. 4687-4694.
2. Lee J., et al., In vitro toxicity testing of nanoparticles in 3D cell culture.
 Small (Impact factor: 8.315), 2009, 5(10): p. 1213-1221.
3. Zhang Y. and Xia Y., Formation of Embryoid Bodies with Controlled Sizes and Maintained Pluripotency in Three-Dimensional Inverse Opal
Scaffolds.
 Advanced Functional Materials (Impact factor: 11.382), 2012, 22(1): p. 121-129.

D. Neovascularization

1. Madden L. R., et al., Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proceedings of the National Academy of Sciences of the United States of America (Impact factor: 9.432), 2010, 107(34): p. 15211-15216

E. Bone

1. Osathanon T., et al., Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials (Impact factor: 8.387), 2008, 29(30): p. 4091-4099.
2. Cuddihy M. J. and Kotov N. A., Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry. Tissue Engineering Part A (Impact factor: 3.893), 
2008, 14(10): p. 1639-1649.
3. Osathanon T., et al., Immobilization of alkaline phosphatase on microporous nanofibrous fibrin scaffolds for bone tissue engineering. Biomaterials (Impact factor: 8.387), 
2009, 30(27): p. 4513-4521.
4. Choi S. W., et al., In Vitro Mineralization by Preosteoblasts in Poly(dl-lactide-co-glycolide) Inverse Opal Scaffolds Reinforced with Hydroxyapatite Nanoparticles. Lanqmuir (Impact factor: 3.993*), 2010, 26(14): p. 12126-12131.

F. Cartilage

1. Kuo Y. C. and Tsai Y. T., Inverted colloidal crystal scaffolds for uniform cartilage regeneration. Biomacromolecules (Impact factor: 5.583), 2010. 11(3): p. 731-739.
2. Kuo Y. C. and Tsai Y. T., Heparin-conjugated scaffolds with pore structure of inverted colloidal crystals for cartilage regeneration.
 Collold
surface B (Impact factor: 3.902), 2011, 82(2): p.616-623.


细胞培养

1. 将支架分别放置于 48 well (或 96 well) 细胞多孔盘中。

2. 细胞浓度制备成 0.5~5 x 106 / ml,从中取 80 ul 细胞悬浮液缓慢的植入 for 48 well
之支架(for 96 well 之支架植入 40 ul 细胞悬浮液),如右图所示。 悬浮液细胞
3. (Optional) 将植入细胞之支架放入37 ℃、5% CO2之细胞培养箱10~15分钟。
4. 以新鲜的细胞培养液沿着多孔盘边缘缓慢的加入后,放回细胞培养箱。
For 48 well 支架 / 48 well: 1000 ul。
For 96 well 支架 / 96 well: 200 ul 。
5. (Optional) 隔夜培养后,将植入细胞的支架移至新的培养皿,重新添加细胞培养液继续培
养。
6. 比照一般细胞培养流程,并定期更换培养液。

溶解支架

1. 欲溶解之支架先以 1 x PBS 浸泡清洗三次 (5~10分钟 / 每次)。

2. 将清洗后之支架放置于 2 ml 之微量离心管 (Eppendorf Tube) 中。

3. 加入 37 ℃ 预热之 2~5 ml 0.25% trypsin (支架必须完全浸泡于 trypsin 溶液中),
如右图所示。
4. Vortex 混合均匀 3~5秒后,以 1500 rpm之室温 (或37 ℃) 离心 5 分钟,
即可溶解支架。


                                                                                                                              

                                                                                                                                                                                                                                                               
产品货号产品系列规格孔径目录价
GTB120605Tantti® BioScaffold(3D细胞培养支架)5inserts/ vial150um13
GTB120625Tantti® BioScaffold(3D细胞培养支架)25nserts/ vial150um38
GTB120650Tantti® BioScaffold(3D细胞培养支架)50inserts/ vial150um63
GTB120905Tantti® BioScaffold(3D细胞培养支架)5inserts/ vial150um25
GTB120925Tantti® BioScaffold(3D细胞培养支架)25inserts/ vial150um76
GTB120950Tantti® BioScaffold(3D细胞培养支架)50inserts/ vial150um139
GTP120632Tantti® BioScaffold(3D细胞培养支架)32inserts/ 96well plate150um58
GTP120660Tantti® BioScaffold(3D细胞培养支架)60inserts/ 96 well plate150um88
GTP120696Tantti® BioScaffold(3D细胞培养支架)96 nserts/ 96well plate150um126
GTP120916Tantti® BioScaffold(3D细胞培养支架)16inserts/ 48 well plate150um66
GTP120924Tantti® BioScaffold(3D细胞培养支架)24inserts/ 48 well plate150um88
GTP120948Tantti® BioScaffold(3D细胞培养支架)48inserts/ 48 well plate150um151
GGB120000Unitantrix® microcarriers  (3D细胞培养微载体)weight 500mg/vial150um126
GGB120001Unitantrix® microcarriers  (3D细胞培养微载体)weight 1g/vial150um197
GGB120005Unitantrix® microcarriers  (3D细胞培养微载体) weight 5g/vial150um857
GGB120010Unitantrix® microcarriers  (3D细胞培养微载体)weight 10g/vial150um1588
GGB120001-03Unitantrix® microcarriers  (3D细胞培养微载体)weight 1g/vial,3×vials , sterile150um560
GGB120010-05Unitantrix® microcarriers  (3D细胞培养微载体)weight 10g/vial,5×vials ,sterile150um7686
GGB120020Unitantrix® microcarriers  (3D细胞培养微载体)weight 20g/vial,sterile150um3150
GGB120011Unitantrix® microcarriers  (3D细胞培养微载体)weight 100g/vial,sterile150um15120
                                                                                              







杭州诺扬生物技术有限公司 是一家专注于生命科学和生物技术领域的企业。主要经营免疫学,细胞生物学,分子生物学,蛋白质研究各类试剂,及相关生化试剂、进口耗材。我们代理多家著名公司的优质产品,同时不断完善自身的供应体系,致力于为用户提供专业的一站式服务。 诺扬生物 是四正柏,博奥森bioss,Cellmax(赛澳美),康为世纪,GVS,MBL,WAKO(和光),雅酶,友康生物,Cosmo Bio,Gene-tools,PEVIVA,ZYMO,sumitomo bakelite(住友),三博特,百奥迈科,三菱化学,shibayagi等浙江省独家代理,是ENZO,AdipoGen,ThermoFisher,SIGMA,麦迪康,Macklin等的浙江省特约代理